DOI: 10.1002/ejic.201001357

# Intermolecular Hydrogen-Fluorine Interaction in Dimolybdenum Triply Bonded Complexes Modified by Fluorinated Formamidine Ligands for the Construction of 2D- and 3D-Networks

Sebastian Krackl, [a,b] Shigeyoshi Inoue, [b] Matthias Driess, [a,b] and Stephan Enthaler\*[a]

**Keywords:** Molybdenum / Fluorine / Fluorinated ligands / N ligands / Heteroleptic complexes / Multiple bonds / Crystal engineering / Hydrogen-fluorine interactions

The formamidines ArNHC(H)=N-Ar [Ar=Ph (2a), 4-F-Ph (2b),  $3,5-F_2Ph$  (2c) and  $2,6-F_2Ph$  (2d) and  $R=2,3,5-F_3Ph$  (2e),  $3,4,5-F_3Ph$  (2f),  $F_5Ph$  (2g) and  $4-CF_3Ph$  (2h)] were synthesized and the influence of the introduction of a fluorine or a trifluoromethyl group into the aryl unit on the solid-state structures was investigated. On comparing the experimental data, only marginal differences in the geometrical and electronic features of the diverse substituted species were detected. DFT calculations and X-ray crystallography of 2d-2g revealed that the E-syn-configuration corresponded to the thermodynamically most stable motif of all of the examined formamidines. However, in their solid-state, these ligands showed a range of H- $\cdots$ F interactions, which varied depending on the number and position of the fluorine atoms on

the aryl group and thus led to interesting solid-state structures. Moreover, compounds  $\mathbf{2}$  were used for the synthesis of the new heteroleptic dimolybdenum triply-bonded complexes,  $\mathrm{Mo_2}[(2\mathbf{a}-2\mathbf{c};\ 2\mathbf{e}-\mathbf{f})-\mathrm{H}]_2(\mathrm{O}t\mathrm{Bu})_4$   $(3\mathbf{a}-3\mathbf{c};\ 3\mathbf{e}-3\mathbf{f})$ . X-ray crystallography of complexes  $3\mathbf{c}$  and  $3\mathbf{f}$  revealed two different isomers in the solid state: in trans- $3\mathbf{c}$  the two formamidines are in one plane, while in cis- $3\mathbf{c}$  and cis- $3\mathbf{f}$  they are next to each other. The DFT calculations showed only a small distinction in energy between the configurations, which led us to assume that the different configurations were induced by the crystal packing. The specific  $H\cdots F$  interactions provided by the different formamidines led to a two-dimensional arrangement for trans- $3\mathbf{c}$  and a three-dimensional network for cis- $3\mathbf{c}$  and cis- $3\mathbf{f}$ .

 $C-F\cdots\pi_F$  and  $C-F\cdots$ metal interactions, that significantly al-

ter the intra- and intermolecular interactions in the crys-

tal.[1,3,4] During the last decades complexes have been re-

ported that cover several types of fluorine interactions.<sup>[5–7]</sup>

#### Introduction

The replacement of hydrogen by the sterically similar fluorine atom in organic molecules has a tremendous effect on the properties of the obtained material.[1] This is demonstrated by the extensive range of applications of these materials, for example, bulk chemicals, pharmaceuticals, agrochemicals, polymers, solvents and as key intermediates in organic syntheses.<sup>[2]</sup> Furthermore, the exchange of carbonbonded hydrogen with fluorine in the ligand scaffold in organometallic complexes usually leads to alterations in the physical and chemical properties of the respective compound. The high electronegativity and the low polarizability of the fluorine atom are the main reasons for the modifications. In addition, the influence of this substitution is observed in the study of the solid-state structures. Fluorine has the capacity to form various intermolecular interactions, especially phenyl-perfluorophenyl-, C-F...H, F...F,

For example, Cotton et al. reported on the coordination of fluorinated N,N'-bis(phenyl)formamidines ligands to chromium. [8,9] The obtained complexes consist of the structural motif Cr<sub>2</sub>L<sub>4</sub>, which means that the four formamidine ligands are bonded to the quadruply bonded metal centre. The structural information showed a Cr...F interaction for the ortho-fluorine on the phenyl ring of the ligand. So far, to the best of our knowledge, the equivalent metal-metal bonded systems for the higher homologues of chromium, namely molybdenum and tungsten, have not been synthesized. Thus, we were interested in studying the coordination of these types of ligands towards these metals. The coordination of non-fluorine substituted formamidine to quadruply-bonded molybdenum complexes has been demonstrated, while neutral, triply-bonded dimolybdenum analogues have not been reported as yet. Undoubtedly, triplybonded molybdenum complexes are of interest because of their applicability as precursor for heterogeneous materials[10] and as precursor for heterobimetallic compounds,[11] which makes them profitable systems for further applica-

tions. Recently, some of us synthesized monodentate

Mo≡Mo alkoxides,[11,12] which exhibit the general motif of

<sup>[</sup>a] Technische Universität Berlin, Department of Chemistry, Cluster of Excellence "Unifying Concepts in Catalysis", Straße des 17. Juni 135/C2, 10623 Berlin, Germany Fax: +49-30314 29732 E-mail: stephan.enthaler@tu-berlin.de

<sup>[</sup>b] Institute of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201001357.

an "ethane-like" structure with a staggered ligand conformation and unequally oriented ligands with different Mo···O distances at each of the molybdenum atoms.<sup>[13]</sup> Based on these types of complexes we were interested in the coordination abilities of the formamidine ligands. In this work, fluorinated formamidine ligands will be studied with regards to the fluorine interactions and the consequent formation of 2D- and 3D-networks in the crystal.

#### **Results and Discussion**

The formamidines  $\mathbf{2}$  were synthesized by following the reported procedures. Two equivalents of the corresponding aniline were treated with triethyl orthoformate under refluxing conditions (Scheme 1). The crude products were purified by recrystallization from n-hexane to obtain  $\mathbf{2}$  in fair to good yields. Notably, in all of the cases the E-isomer selectively formed, which is in accordance with the literature. [14]

Scheme 1. The synthesis of the substituted N,N'-bis(phenyl)formamidines (2).

In addition, we studied the influence of the various substituents in comparison to the parent structure **2a**, and in particular the effect of the fluorine substitution. The typical analytical parameters are given in Table 1. In order to detect geometrical and electronic changes, the formamidine proton was applied as a sensor. A significant influence on the <sup>1</sup>H NMR chemical shift was found when the number of fluoro substituents on the aryl unit was increased, however, no effect was observed when a *para*-trifluoromethyl group was embedded. In general, only a marginal influence was seen when the formamidine carbon was used as the sensor, since all of the <sup>13</sup>C NMR spectroscopic values are in the range of 149 to 151 ppm. However, a significant shift of 159.0 ppm was measured for ligand **2h**.

In order to get insight into the geometrical structure of the formamidines (Scheme 2), DFT-calculations at the RB3LYP/6-31++G(d,p) level were performed. The *E-syn*-configuration corresponded to the most thermodynamically stable motif (Table 2), which is in agreement with the experimental observations. This was further confirmed by single-crystal X-ray crystallography, since in all of the cases the *E-syn*-isomer was obtained.

In addition, a different orientation of the aryl groups was observed in the molecular structures for the compounds 2d,

Table 1. Characterization of formamidines 2.

| L          | <sup>1</sup> H NMR [ppm] <sup>[a]</sup> | <sup>13</sup> C NMR [ppm] <sup>[b]</sup> | IR [cm <sup>-1</sup> ] <sup>[c]</sup> | $\lambda \text{ [cm}^{-1}\text{]}^{[d]}$ |
|------------|-----------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------|
| 2a         | 8.24                                    | 149.5                                    | 1679                                  | 281.5                                    |
| <b>2</b> b | 8.07                                    | 150.2                                    | 1671                                  | 279.5                                    |
| <b>2</b> c | 8.03                                    | 149.1                                    | 1676                                  | 294.5                                    |
| 2d         | 7.94                                    | 154.3                                    | 1669                                  | 268.0                                    |
| <b>2e</b>  | 8.14                                    | 149.8                                    | 1672                                  | 292.0                                    |
| 2f         | 7.89                                    | 150.2                                    | 1677                                  | 271.0                                    |
| 2g         | 8.28                                    | _                                        | 1678                                  | 264.5                                    |
| 2h         | 8.21                                    | 159.0                                    | 1672                                  | 300.8                                    |
|            |                                         |                                          |                                       |                                          |

[a] The chemical shift ( $^{1}H$  NMR) for RN=C(H)NHR was measured in [D<sub>1</sub>]chloroform at 25 °C. [b] The chemical shift ( $^{13}C$  NMR) for RN=C(H)NHR was measured in [D<sub>1</sub>]chloroform at 25 °C. [c] KBr. [d] All of the measurements were carried out in CH<sub>3</sub>CN at 25 °C.

Scheme 2. The synthesis of the complexes  $Mo_2[(2a-2c; 2e-2f)-H]_2(OtBu)_4$  (3a-3c; 3e-3f).

Table 2. The calculated and observed geometrical details for 2.

|              | 2a    | 2b                   | 2c    | 2d    | <b>2e</b> | 2f    | <b>2</b> g | 2h    |
|--------------|-------|----------------------|-------|-------|-----------|-------|------------|-------|
| N1–C1 [Å]    | 1.284 | 1.283                | 1.283 | 1.284 | 1.283     | 1.283 | 1.285      | 1.283 |
| Observed     | _     | 1.283 <sup>[a]</sup> | _     | 1.286 | 1.298     | 1.280 | 1.311      | _     |
| N2-C1 [Å]    | 1.369 | 1.369                | 1.369 | 1.371 | 1.375     | 1.369 | 1.374      | 1.369 |
| Observed     | _     | 1.342 <sup>[a]</sup> | _     | 1.344 | 1.331     | 1.351 | 1.331      | _     |
| N1-C1-N2 [°] | 119.8 | 119.8                | 119.5 | 118.3 | 117.8     | 119.5 | 118.0      | 120.5 |
| Observed     | _     | 122.6 <sup>[a]</sup> | -     | 120.5 | 122.2     | 121.8 | 121.0      | -     |

[a] The values for 2b were taken from ref.[14]

2e and 2g, all of which exhibit a fluorine atom in the *ortho*-position. The aryl groups in these compounds were symmetrically oriented to each other (see Figure 1).

Short intramolecular Ar–F···H–C(=NAr)NHAr distances for compounds **2d**, **2e** and **2g** were observed (2.356–2.502 Å), which most probably favours this geometry since for **2f** the aryl groups are twisted towards each other at an angle of nearly 90°. In their solid-state, these compounds show a variety of dimensional networks that were mediated by the H···F interactions, which include the short Ar–F···H<sub>para</sub>–Ar, Ar–F···H–C(=NAr)NHAr and Ar–F···F–Ar distances as well as the stacking interactions between the adjacent aryl units (for a detailed description, see Supporting Information).

At this point we were interested in attaching the studied formamidines to transition metals in order to design metal-containing dimensional networks. We decided to coordinate the fluorine substituted formamidines to the dimolybdenum triple bond by means of a direct protolysis reaction of 2 with  $Mo_2(OtBu)_6$ . The starting material  $Mo_2(OtBu)_6$  was easily accessible by means of salt metathesis from  $Mo_2Cl_6(dme)_2$ [16] (dme = dimethoxyethane). A ratio of 2:1 [ligand:  $Mo_2(OtBu)_6$ ] was chosen, which should theoretic-



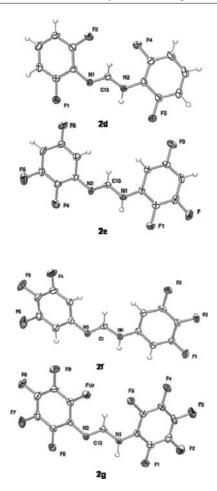



Figure 1. The molecular structures for 2d–2g. The thermal ellipsoids are drawn at the 50% probability level. The solvent molecules for 2g (toluene) are omitted for clarity.

ally lead to a partial substitution of the alkoxy ligands, in order to investigate the coordination preference of the dimolybdenum centre and to retain the solubility of the complexes in nonpolar solvents. The addition of 2a–2c and 2e–2f to Mo<sub>2</sub>(OtBu)<sub>6</sub> resulted in a partial protolysis and afforded the complexes Mo<sub>2</sub>[(2a–2c; 2e–2f)–H]<sub>2</sub>(OtBu)<sub>4</sub> (3a–3c; 3e–3f) (Scheme 2). To the best of our knowledge, 3 are the first neutral, triply-bonded dimolybdenum complexes that bear a formamidine ligand.

The complexes formed by the reaction of formamidines 2d and 2g with Mo<sub>2</sub>(OtBu)<sub>6</sub> could not be obtained in an analytically pure form (mismatching elemental analysis), although the <sup>1</sup>H NMR spectra appeared to be fairly clean, and thus these complexes are not discussed. Furthermore, the reaction of 2h with Mo<sub>2</sub>(OtBu)<sub>6</sub> led to a complex mixture of products that did not include the desired triply-bonded complex. Changing the reaction conditions has not resulted in a suitable outcome for this reaction as yet. The complexes 3a–3c and 3e–3f are green–brown powders that are extraordinarily sensitive towards oxygen and moisture. They decomposed without subliming between 80 and 100 °C and did not give rise to the appropriate mass spectra. In the <sup>1</sup>H NMR spectra successful coordination was easily followed by the disappearance of the N–H proton

signal. The peaks that correspond to the proton at the carbon atom in the formamidine functionality are significantly shifted to the lower field as compared to those of the non-shifted signal for the uncoordinated species (Table 3).

Table 3. Selected NMR data ( $\delta$  values, ppm)<sup>[a]</sup> for **3a–3c** and **3e–3f** 

| L  | -N= <i>C</i> (1) 13C NN | H)N-1H NMR<br>IR |      | <sup>1</sup> H <sub>3</sub> ) <sub>3</sub> <sup>1</sup> H<br><sup>13</sup> C NMR | $-ArH_{5-n}F_n^{-1}H$<br>NMR |
|----|-------------------------|------------------|------|----------------------------------------------------------------------------------|------------------------------|
| 3a | 8.83                    | 169.6            | 1.32 | 33.0                                                                             | 6.13–6.32                    |
| 3b | 8.88                    | 176.3            | 1.40 | 32.2                                                                             | 6.11 - 6.32                  |
| 3c | 8.97                    | 176.0            | 1.43 | 32.1                                                                             | 6.00-6.28                    |
| 3e | 9.13                    | 179.1            | 1.44 | 32.8                                                                             | 6.07 - 6.36                  |
| 3f | 8.87                    | 175.9            | 1.46 | 32.3                                                                             | 6.13-6.29                    |

[a] The chemical shifts ( $^1$ H and  $^{13}$ C NMR spectroscopy) were measured in [D<sub>1</sub>]chloroform at 25 °C.

In contrast, the signal corresponding to the tert-butoxy protons shifted to a higher field compared to that of the homoleptic analogue, Mo<sub>2</sub>(OtBu)<sub>6</sub>. This phenomenon has been observed in other heteroleptic complexes<sup>[17]</sup> and is probably caused by the change in orientation of the OtBu groups, which consequently results in a different magnetic environment due to the magnetic anisotropy of the dimolybdenum triple bond.[11] The strong shift to a lower field of the methine proton (N=CH-N) can also be attributed to the diamagnetic anisotropy, since it is placed over the centre of the triple bond and thus strongly deshielded.[12] In both the <sup>1</sup>H NMR and the <sup>13</sup>C NMR spectra we observed only one set of broad signals for both of the aryl ligands on the same formamidine. This implied a symmetrical bonding contribution for both of the nitrogen atoms. The assumed ligand distribution in the complexes was confirmed by the matching integral ratios for the corresponding proton signals. Since solvent molecules are readily lost from the recrystallized material, it was crushed and dried in vacuo at elevated temperatures and, thus, no residual signals for the solvent molecules (neither toluene nor dichloromethane) were observed in the spectra.

Further evidence was provided by the single-crystal X-ray diffraction data. Suitable single crystals for compounds **3c** and **3f** were obtained from toluene/dichloromethane (DCM). Compound **3c** crystallizes in the monoclinic space group,  $P2_1/c$  with Z=2, and one cocrystallized toluene molecule was found in the unit cell (Figure 2).

The Mo–Mo distance for *trans*-3c·toluene (2.253 Å) is slightly elongated compared to that of other Mo≡Mo complexes. This is probably due to the substitution with a bridging ligand that enforces the eclipsed conformation as reported for other compounds (Table 4).<sup>[15]</sup> The Mo–N bond distances are statistically identical with 2.175 and 2.183 Å and are in the expected range. Each formamidine constitutes a planar five-membered ring with the molybdenum atoms. The Mo–Mo–N1 and Mo–Mo–N2 bond angles of 90.69 and 91.01°, respectively, are close to each other and both formamidine ligands are opposite to each other in one plane.

The Mo-O bond distances are 1.901 and 1.931 Å for both of the molybdenum atoms and the alkoxide ligands

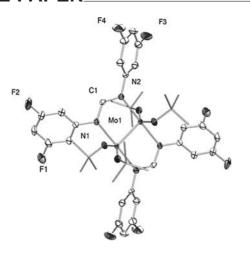



Figure 2. The ORTEP presentation of complex *trans-3c*. The hydrogen atoms and the solvent molecules (toluene) are omitted for clarity.

Table 4. Selected bond lengths [Å] and angles [°] for *trans-3c*, *cis-3c* and *cis-3f*.

|            | trans-3c·toluene[a] | cis-            | cis-3f·DCM |
|------------|---------------------|-----------------|------------|
|            |                     | 3c·cyclopentane |            |
| Mo1–Mo2    | 2.253(4)            | 2.2503(5)       | 2.256(1)   |
| Mo1-N1     | 2.175(3)            | 2.176(4)        | 2.174(6)   |
| Mo1-N3     | 2.175(3)            | 2.221(4)        | 2.247(7)   |
| Mo2-N2     | 2.183(3)            | 2.232(4)        | 2.243(6)   |
| Mo2-N4     | 2.183(3)            | 2.194(4)        | 2.176(7)   |
| Mol-Ol     | 1.901(3)            | 1.912(3)        | 1.896(5)   |
| Mo1-O2     | 1.931(2)            | 1.891(3)        | 1.899(5)   |
| Mo2–O3     | 1.901(3)            | 1.883(4)        | 1.864(6)   |
| Mo2-O4     | 1.931(2)            | 1.908(3)        | 1.910(5)   |
| Mo1-Mo2-O1 | 112.2(7)            | 101.3(1)        | 110.3(2)   |
| Mo1-Mo2-O2 | 101.1(7)            | 110.8(1)        | 101.3(2)   |
| Mo1-Mo2-O3 | 112.2(7)            | 110.9(1)        | 112.0(2)   |
| Mo1-Mo2-O4 | 101.1(7)            | 100.6(1)        | 102.2(2)   |
| Mo1-Mo2-N1 | 90.6(8)             | 92.5(1)         | 92.8(2)    |
| Mo1-Mo2-N2 | 91.0(8)             | 87.6(1)         | 88.1(2)    |
| Mo1-Mo2-N3 | 90.6(8)             | 87.6(1)         | 87.8(2)    |
| Mo1-Mo2-N4 | 91.0(8)             | 92.6(1)         | 93.0(2)    |
| N1-Mo1-O1  | 90.1(1)             | 150.2(1)        | 151.3(2)   |

[a] For trans-3c Mo2=Mo1', O1=O3, O2=O4, N1=N3, N2=N4.

are oriented differently in space: one points towards the Mo-Mo triple bond and the other one points away from the Mo-Mo triple bond.

In contrast, we obtained a different structural motif from the crystallization of compound cis-3f under similar conditions. Compound 3f crystallizes in the triclinic space group,  $P\bar{1}$ , with Z=2. The Mo-Mo distances for trans-3c and cis-3f are in a similar range, with a bond length of 2.256 Å for the latter (Figure 3). However, in the molecular structure of complex cis-3f no planar ring between the formamidine and the triple bond is constituted and the Mo-N bond distances for the same ligand differ strongly (average 2.174 and 2.245 Å), which indicates a weaker Lewis base donation of the ligand nonbonding nitrogen. The two OtBu ligands attached to the same molybdenum atom also have a different orientation in space. Intriguingly, the Mo2-O bond distances differ from each other (1.864 and 1.910 Å), but the

Mo1-O distances are statistically identical (1.896 and 1.899 Å). In order to understand the reason for the two different configurations observed for 3, we decided to perform DFT calculations at the B3LYP level. For both compounds the calculations showed an almost equal stability for both confirmations, with a slightly higher stability for the trans-configuration, with 1.59 kcal mol<sup>-1</sup> for 3c and 1.29 kcal mol<sup>-1</sup> for **3f**. Simulating the molecular orbitals for the cis-configuration did not reveal any delocalization of the electron density over the ligand or the triple bond in both cases. This means that, most probably, packing effects, and thus the specific H···F interactions formed by the respective ligand as well as the nature of the cocrystallized solvent, are responsible for the change in configuration, since we assumed fast ligand scrambling with the involvement of a rapid change from terminal to bridging modes for the alkoxy ligands in solution, as reported for other triplybonded dimolybdenum complexes.<sup>[18]</sup> Further proof for this assumption was provided by the solvent exchange experiments. Therefore, we recrystallized complex 3c in a 1:1 mixture of cyclopentane/DCM instead of the 1:1 mixture of toluene/DCM applied in the synthesis. After cooling to −20 °C for two weeks, we obtained crystals that significantly differed in their crystal morphology. The complementary structure of 3c, namely, the cis-configuration, was observed by means of single-crystal X-ray diffraction measurements (Figure 4) and cyclopentane replaced the cocrystallized toluene.

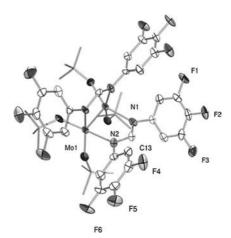



Figure 3. The ORTEP presentation of complex *cis*-**3f**. The hydrogen atoms, the solvent molecules (DCM) and the equal ligands are omitted for clarity.

The *cis*-isomers of **3f** and **3c** show very similar structural features, namely, similar Mo–Mo, Mo–N and Mo–O bond lengths and the resulting bond angles, and thus only a small amount of change is induced in the molecule by varying the fluorine substitution pattern of the aryl ligand (Table 4). The latter results support the assumption that there is a rapid equilibrium between the *cis/trans*-configurations in solution and that the observed isomers in the solid state are determined by the crystal packing. However, more detailed experimental and theoretical investigations on this subject are in progress.



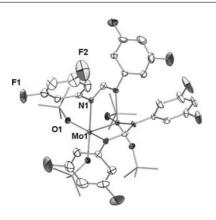



Figure 4. The ORTEP presentation of complex *cis*-3c. The hydrogen atoms, the solvent molecules (cyclopentane) and the equal ligands are omitted for clarity.

Further investigation into the solid-state structures of the obtained complexes showed that the formamidines are an excellent tool for the design of transition metal-containing dimensional networks that are mediated by H···F interactions. In the solid-state structure of *trans*-3c, short Ar-F···H-C(NAr)<sub>2</sub> interactions are present (2.403 Å) with a F···H-C bond angle of 153.99°, longer Ar-F···H-Ar interactions of 2.540 and 2.625 Å are also present with F···H-C bond angles of 132.48 and 121.81°, respectively (Figure 5).

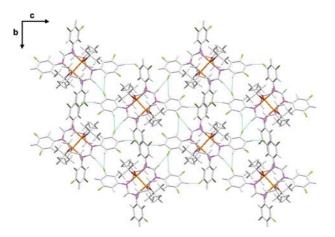



Figure 5. A cut-out along the bc-plane of the crystal structure for complex *trans*-3c. The solvent molecules (toluene) are omitted for clarity. The blue lines represent the Ar–F···H–C(NAr)<sub>2</sub> interactions (2.403 Å) and the F···H–C bond angle of 153.99°, as well as the longer Ar–F···H–Ar interactions (2.540 and 2.625 Å) with the F···H–C bond angles of 132.48 and 121.81°.

These F···H interactions led to a planar arrangement of the subunits in the bc plane without short contacts between the different planes. The OtBu ligands are sited above and beneath these planes and are in separate, adjacent planes from each other. The cocrystallized toluene is found in the interspaces between the layers.

The solid-state structure of *cis-***3f** varies strongly from the described network of *trans-***3c** and shows a similar appearance to that of the noncoordinated ligand **2f** (see Supporting Information).

No short Ar–F···H–C(NAr)<sub>2</sub> contacts are present for *cis*-3f, as observed in the crystal structure of the free ligand 2f. However, the H···F interactions are present between the Ar-fluorine atoms and the protons at the OtBu groups (average 2.675 Å) and the stacking interactions are present between the adjacent molecules with an aryl---aryl average distance of 3.429 Å (Figure 6). These interactions result in the construction of a three-dimensional network. For the solid-state structure of cis-3c we obtained a similar picture as for cis-3f, namely, a three-dimensional network. However, in this case, no stacking interactions and only short H···F-Ar interactions were observed. Unfortunately, recrystallization of the synthesized complexes 3a, 3b and 3e did not afford crystals that were suitable for single-crystal X-ray diffraction measurements, and thus, the potential Mo···F interactions could not be observed. Attempts concerning this matter are still in progress.

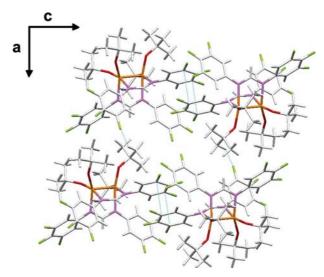



Figure 6. A cut-out along the ac plane of the crystal structure for complex *cis*-3f. The solvent molecules (DCM) are omitted for clarity. The blue lines represent the H···F contacts between the Arfluorine atoms and the protons at the OtBu groups (average 2.675 Å) and the Ar-F···Ar-F distance (average 3.429 Å) between the parallel-stacked aryl substituents. The cocrystallized DCM molecules are accommodated in the voids of the network, which has a short Ar-F···H<sub>2</sub>CCl<sub>2</sub> distance that is in the range of 2.575–2.655 Å.

## **Conclusions**

In summary we have demonstrated the application and usefulness of fluorine-substituted formamidines for the construction of dimensional networks. Firstly the formamidines 2a–2h were synthesized and investigated in detail concerning the effect of fluorine and trifluoromethyl substitution on the properties of the ligand and its influence on their corresponding solid-state structures. Although the experimental data only showed marginal differences in the geometrical and electronic features between the diverse substituted species, these compounds showed manifold H···F interactions, which specifically altered the solid-state structure of the corresponding compound and led to 2D- and

# **FULL PAPER**

3D-networks with different appearances. Having synthesized these fluorinated formamidines, we questioned whether this specificity could be applied in order to design the solid-state structures of the corresponding metal complexes. The formamidine ligands were coordinated to a triply-bonded dimolybdenum complex and, depending on the position of the fluorine and the applied solvent, different crystal morphologies and different configurations for the resulting complexes, Mo<sub>2</sub>[(2a-2c; 2e-2f)-H]<sub>2</sub>(OtBu)<sub>4</sub>, were observed. For instance, trans-3c displayed a planar configuration for the attached formamidines and the molecular subunits constructed a 2D-arrangement by means of the H...F interactions, while in the corresponding cis-isomer (cis-3c or cis-3f) the ligands were oriented next to each other and the specific interactions lead to the formation of a three-dimensional network.

## **Experimental Section**

General: All of the manipulations with oxygen- and moisture-sensitive compounds were performed under dinitrogen by using the standard Schlenk technique. 1H, 19F and 13C NMR spectra were recorded with a Bruker AFM 200 spectrometer (1H: 200.13 MHz; <sup>13</sup>C: 50.32 MHz; <sup>19</sup>F: 188.31 MHz) and by using the proton signals of the deuterated solvents as the reference. The single-crystal X-ray diffraction measurements were recorded with an Oxford Diffraction Xcalibur S Saphire spectrometer. The IR spectra were recorded either with a Nicolet Series II Magna-IR-System 750 FTR-IR instrument or with a Perkin–Elmer Spectrum 100 FTIR instrument. The electron ionisation mass spectra (EI-MS) were recorded with a Finnigan MAT95S instrument. The melting points (m.p.) were determined with a BSGT Apotec II capillary-tube apparatus and are uncorrected. The UV/Vis spectra were recorded with a Perkin-Elmer Lambda 20 spectrometer at ambient temperature. The elemental analyses were performed with a Perkin-Elmer Series II CHNS/O Analyzer 2400 instrument.

Single-Crystal X-ray Structure Determinations: The single crystals were mounted on a glass capillary in perfluorinated oil and measured in a cold steam of  $N_2$ . The data for 2d-2g, trans-3c, cis-3c and cis-3f were collected with an Oxford Diffraction Xcalibur S Saphire at 150 K (Mo- $K_a$  radiation,  $\lambda = 0.71073$  Å,  $\omega$ -scan). The structures were solved by direct methods. The refinements were carried out with the SHELXL-97 package. [19] All of the thermal displacement parameters were refined anistropically for non-hydrogen atoms and the positions of the hydrogen atoms were calculated and considered isotropically according to a riding model. All of the refinements were carried out by full-matrix least-squares refinement on  $F^2$ . The crystallographic data for the seven compounds are summarized in Table 5.

CCDC-793747 (for *trans-3c*), -793752 (for *cis-3f*) and -808037 (for *cis-3c*) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

General Synthesis of N,N'-Bis(phenyl)formamidines: A mixture of the corresponding aniline (50 mmol) and triethyl orthoformate (25 mmol) was heated under reflux for 12 h. All of the volatiles were removed in vacuo and the residue was washed with n-hexane to yield a white powder.

*N*,*N'*-Bisphenylformamidine (2a): $^{[20,21]}$  Yield 76% (3.7 g); m.p. 139 °C (crystallized from *n*-hexane).  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.90 (br., 1 H, NH), 8.24 (s, 1 H, N=C*H*N), 7.04–7.37 (m, 10 H, Ar) ppm.  $^{13}$ C NMR (CDCl<sub>3</sub>):  $\delta$  = 149.5 (N=*C*HN), 145.2, 129.3, 123.3, 119.1 ppm. IR (KBr):  $\tilde{v}$  = 3050 (br.), 3052 (w), 2923 (w), 1679 (s), 1660 (s), 1601 (w), 1583 (s), 1488 (s), 1450 (w), 1321 (m), 1209 (m), 1171 (w), 987 (w), 900 (w), 766 (m), 754 (m), 695 (m) cm<sup>-1</sup>. ESI-MS: m/z (%) = 197 (100) [M<sup>+</sup>]. HRMS: calcd. for C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>+H: 197.10733; found 197.10687. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 281.5 nm.

*N,N'*-Bis(4-fluorophenyl)formamidine (2b):<sup>[8,22-25]</sup> Yield 63% (3.7 g); m.p. 142–144 °C (crystallized from *n*-hexane). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 9.65 (br., 1 H, NH), 8.07 (s, 1 H, N=C*H*N), 6.97–7.10 (m, 8 H, Ar) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 161.8, 157.0, 150.2 (N=CHN), 141.2, 120.5, 120.4, 116.2, 115.8 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -120.0 (m) ppm. IR (KBr):  $\tilde{v}$  = 3428 (w), 2928 (w), 2862 (w), 1671 (s), 1603 (w), 1502 (s), 1380 (m), 1313 (m), 1202 (m), 999 (w), 825 (m), 750 (w), 501 (w) cm<sup>-1</sup>. ESI-MS: *m/z* (%) = 236 (100), 233 (13) [M<sup>+</sup>], 227 (41), 214 (24), 159 (23), 149 (48), 133 (26). HRMS: calcd. for C<sub>13</sub>H<sub>10</sub>F<sub>2</sub>N<sub>2</sub>+H: 233.08848; found 233.08671. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 279.5 nm.

*N*,*N'*-Bis(3,5-difluorophenyl)formamidine (2c): Yield 51% (3.4 g); m.p. 182 °C. ¹H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.03 (s, 1 H, N=C*H*N), 6.46–6.73 (m, 6 H, Ar) ppm. ¹³C NMR (CDCl<sub>3</sub>):  $\delta$  = 165.6, 165.5, 163.2, 163.1, 149.1, 118.3, 103.4, 99.2, 98.9, 98.7 ppm. ¹°F NMR (CDCl<sub>3</sub>):  $\delta$  = -108.6 (m) ppm. IR (KBr):  $\tilde{v}$  = 3095 (m), 1676 (s), 1614 (s), 1513 (m), 1478 (m), 1453 (m), 1380 (m), 1356 (m), 1322 (m), 1284 (m), 1224 (m), 1161 (m), 1135 (s), 1121 (s), 1034 (m), 986 (s), 869 (m), 855 (m), 838 (m), 788 (w), 748 (w), 676 (m), 649 (w), 594 (w), 565 (w), 531 (w), 510 (w) cm<sup>-1</sup>. ESI-MS: m/z (%) = 269 (100) [M<sup>+</sup>]. HRMS: calcd. for C<sub>13</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>+H: 269.06964; found 269.04294. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 294.5 nm.

*N*,*N'*-Bis(2,6-difluorophenyl)formamidine (2d): Yield 89% (5.9 g); m.p. 151 °C (crystallized from *n*-hexane). ¹H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.44 (br., 1 H, NH), 7.94 (s, 1 H, N=C*H*N), 6.85–7.10 (m, 6 H, Ar) ppm. ¹³C NMR (CDCl<sub>3</sub>):  $\delta$  = 157.7, 157.6, 154.44, 154.39, 152.8, 152.7, 123.4, 123.2, 123.0, 121.9, 112.0, 111.9, 111.7, 111.6 ppm. ¹³F NMR (CDCl<sub>3</sub>):  $\delta$  = -123.9 (s) ppm. IR (KBr):  $\tilde{v}$  = 2884 (w), 1669 (s), 1613 (w), 1492 (m), 1466 (m), 1313 (m), 1270 (m), 1240 (w), 1206 (m), 993 (m), 777 (m), 738 (w), 711 (w) cm<sup>-1</sup>. ESI-MS: m/z (%) = 269 (100) [M<sup>+</sup>]. HRMS: calcd. for C<sub>13</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>+H: 269.06964; found 269.05377. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 268.0 nm.

*N,N-Bis*(2,3,5-trifluorophenyl)formamidine (2e): Yield 71% (5.4 g), m.p. 124 °C (crystallized from *n*-hexane). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.14 (s, 1 H, N=C*H*N), 6.73–6.60 (m, 4 H, Ar) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 159.4, 156.9, 152.3, 149.8, 149.1, 103.4, 100.4 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -114.1, -133.3, -159.4 ppm. IR (KBr):  $\tilde{v}$  = 2974 (w), 1672 (s), 1609 (s), 1514 (m), 1492 (w), 1417 (w), 1315 (s), 1213 (m), 1156 (m), 1107 (s), 1069 (s), 988 (w), 848 (w), 832 (m), 777 (w), 731 (w), 673 (w), 643 (m), 619 (w), 591 (w), 553 (w), 510 (w) cm<sup>-1</sup>. ESI-MS: m/z (%) = 305 (100) [M<sup>+</sup>], 236 (40), 146 (39). HRMS: calcd. for C<sub>13</sub>H<sub>6</sub>F<sub>6</sub>N<sub>2</sub>+H: 305.05079; found 305.04923. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 292.0 nm.

*N,N*-Bis(3,4,5-trifluorophenyl)formamidine (2f): Yield 38 % (2.9 g), m.p. 142 °C (crystallized from *n*-hexane). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 7.89 (s, 1 H, N=C*H*N), 6.61–6.92 (m, 4 H, Ar) ppm. <sup>13</sup>C NMR (CD<sub>3</sub>CN):  $\delta$  = 161.8, 157.0, 150.2 (N=*C*HN), 141.3, 120.5, 120.4, 116.2, 115.8 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -132.8 (s), -166.4, -165.9 (m) ppm. IR (KBr):  $\tilde{v}$  = 3105 (w), 3010 (w), 2917 (w), 1677 (s), 1619 (s), 1519 (s), 1437 (m), 1398 (w), 1380 (m), 1341 (m), 1280 (s),



Table 5. The data collection and the refinement parameters for 2d-2g, trans-3c, cis-3c and cis-3f.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2d                                                                                                                                                                                                                                                                   | 2e                                                                                                                                                                                                                                                                               | 2f                                                                                                                                                                                                                                                                                 | 2g·toluene                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Empirical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{13}H_8F_4N_2$                                                                                                                                                                                                                                                    | $C_{13}H_{6}F_{6}N_{2}$                                                                                                                                                                                                                                                          | $C_{13}H_{6}F_{6}N_{2}$                                                                                                                                                                                                                                                            | $C_{20}H_{10}F_{10}N_2$        |
| ormula weight [g/mol]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 268.21                                                                                                                                                                                                                                                               | 304.20                                                                                                                                                                                                                                                                           | 304.20                                                                                                                                                                                                                                                                             | 468.30                         |
| emperature [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150(2)                                                                                                                                                                                                                                                               | 150(2)                                                                                                                                                                                                                                                                           | 150(2)                                                                                                                                                                                                                                                                             | 150(2)                         |
| pace group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P2_1/c$                                                                                                                                                                                                                                                             | $P2_1/c$                                                                                                                                                                                                                                                                         | $P\bar{1}$                                                                                                                                                                                                                                                                         | $P2_1/n$                       |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.9581(6)                                                                                                                                                                                                                                                            | 11.3272(6)                                                                                                                                                                                                                                                                       | 6.9917(6)                                                                                                                                                                                                                                                                          | 12.2830(8)                     |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.2415(9)                                                                                                                                                                                                                                                           | 25.5824(14)                                                                                                                                                                                                                                                                      | 7.6522(6)                                                                                                                                                                                                                                                                          | 6.8687(6)                      |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.1617(9)                                                                                                                                                                                                                                                           | 8.2359(4)                                                                                                                                                                                                                                                                        | 11.4522(7)                                                                                                                                                                                                                                                                         | 22.2265(17)                    |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                               | 83.865(6)                                                                                                                                                                                                                                                                          | 90                             |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.700(8)                                                                                                                                                                                                                                                            | 99.683(5)                                                                                                                                                                                                                                                                        | 84.241(6)                                                                                                                                                                                                                                                                          | 92.510(6)                      |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90                                                                                                                                                                                                                                                                   | 90                                                                                                                                                                                                                                                                               | 84.642(7)                                                                                                                                                                                                                                                                          | 90                             |
| olume [Å <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1138.43(15)                                                                                                                                                                                                                                                          | 2352.6(2)                                                                                                                                                                                                                                                                        | 604.01(8)                                                                                                                                                                                                                                                                          | 1873.4(2)                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                  | 4                              |
| o <sub>cald.</sub> [g/cm <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.565                                                                                                                                                                                                                                                                | 1.718                                                                                                                                                                                                                                                                            | 1.673                                                                                                                                                                                                                                                                              | 1.660                          |
| (000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 544                                                                                                                                                                                                                                                                  | 1216                                                                                                                                                                                                                                                                             | 304                                                                                                                                                                                                                                                                                | 936                            |
| rystal size [mm <sup>3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.13 \times 0.09 \times 0.08$                                                                                                                                                                                                                                       | $0.17 \times 0.12 \times 0.11$                                                                                                                                                                                                                                                   | $0.16 \times 0.15 \times 0.15$                                                                                                                                                                                                                                                     | $0.12 \times 0.11 \times 0.09$ |
| range [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.36 to 24.99                                                                                                                                                                                                                                                        | 3.44 to 25.00                                                                                                                                                                                                                                                                    | 3.38 to 25.00                                                                                                                                                                                                                                                                      | 3.49 to 25.00°                 |
| ndex ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-8 \le h \le 9$                                                                                                                                                                                                                                                     | $-13 \le h \le 13$                                                                                                                                                                                                                                                               | $-7 \le h \le 8$                                                                                                                                                                                                                                                                   | $-14 \le h \le 14$             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-16 \le k \le 16$                                                                                                                                                                                                                                                   | $-27 \le k \le 30$                                                                                                                                                                                                                                                               | $-9 \le k \le 9$                                                                                                                                                                                                                                                                   | $-8 \le k \le 8$               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-10 \le k \le 10$ $-12 \le l \le 10$                                                                                                                                                                                                                                | $-6 \le l \le 9$                                                                                                                                                                                                                                                                 | $-13 \le l \le 13$                                                                                                                                                                                                                                                                 | $-24 \le l \le 26$             |
| eflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8285                                                                                                                                                                                                                                                                 | 9331                                                                                                                                                                                                                                                                             | 4159                                                                                                                                                                                                                                                                               | 12802                          |
| ndependent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1996                                                                                                                                                                                                                                                                 | 4131                                                                                                                                                                                                                                                                             | 2124                                                                                                                                                                                                                                                                               | 3290                           |
| int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0360                                                                                                                                                                                                                                                               | 0.0433                                                                                                                                                                                                                                                                           | 0.0231                                                                                                                                                                                                                                                                             | 0.0254                         |
| Completeness to $\theta = 25.00^{\circ}$ [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.8                                                                                                                                                                                                                                                                 | 99.8                                                                                                                                                                                                                                                                             | 99.8                                                                                                                                                                                                                                                                               | 99.8                           |
| tel. transmission factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9889 and 0.9847                                                                                                                                                                                                                                                    | 0.9815 and 0.9716                                                                                                                                                                                                                                                                | 1.000 and 0.9912                                                                                                                                                                                                                                                                   | 0.9850 and 0.9800              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      | 399                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    | 290                            |
| arameters<br>GOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 172<br>0.949                                                                                                                                                                                                                                                         | 0.876                                                                                                                                                                                                                                                                            | 194<br>0.933                                                                                                                                                                                                                                                                       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    | 1.118                          |
| inal R indices $[I > 2\sigma(I)]^{[a,b]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $R_1 = 0.0343$                                                                                                                                                                                                                                                       | $R_1 = 0.0470$                                                                                                                                                                                                                                                                   | $R_1 = 0.0343$                                                                                                                                                                                                                                                                     | $R_1 = 0.0464$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $wR_2 = 0.0757$                                                                                                                                                                                                                                                      | $wR_2 = 0.0783$                                                                                                                                                                                                                                                                  | $wR_2 = 0.0685$                                                                                                                                                                                                                                                                    | $wR_2 = 0.1083$                |
| ? indices (all data) <sup>[a,b]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $R_1 = 0.0539$                                                                                                                                                                                                                                                       | $R_1 = 0.1085$                                                                                                                                                                                                                                                                   | $R_1 = 0.0582$                                                                                                                                                                                                                                                                     | $R_1 = 0.0613$                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $wR_2 = 0.0811$                                                                                                                                                                                                                                                      | $wR_2 = 0.0926$                                                                                                                                                                                                                                                                  | $wR_2 = 0.0732$                                                                                                                                                                                                                                                                    | $wR_2 = 0.1148$                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | trans-3c·toluene                                                                                                                                                                                                                                                     | cis-3f·DCM                                                                                                                                                                                                                                                                       | cis-3c·cyclopentane                                                                                                                                                                                                                                                                |                                |
| Empirical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{49}H_{58}F_{8}Mo_{2}N_{4}O_{4}$                                                                                                                                                                                                                                  | $C_{43}H_{48}Cl_2F_{12}Mo_2N_4O_4$                                                                                                                                                                                                                                               | $C_{47}H_{60}F_{8}Mo_{2}N_{4}O_{4}$                                                                                                                                                                                                                                                |                                |
| formula weight [g/mol]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1203.01                                                                                                                                                                                                                                                              | 1175.63                                                                                                                                                                                                                                                                          | 1088.87                                                                                                                                                                                                                                                                            |                                |
| emperature [K]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150(2)                                                                                                                                                                                                                                                               | 150(2)                                                                                                                                                                                                                                                                           | 150(2)                                                                                                                                                                                                                                                                             |                                |
| pace group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P2_1/c$                                                                                                                                                                                                                                                             | $P\bar{1}$                                                                                                                                                                                                                                                                       | CC                                                                                                                                                                                                                                                                                 |                                |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.1268(2)                                                                                                                                                                                                                                                           | 10.7695(11)                                                                                                                                                                                                                                                                      | 10.43190(10)                                                                                                                                                                                                                                                                       |                                |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.6347(4)                                                                                                                                                                                                                                                           | 11.0482(13)                                                                                                                                                                                                                                                                      | 42.3604(4)                                                                                                                                                                                                                                                                         |                                |
| [Å]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.1366(3)                                                                                                                                                                                                                                                           | 21.810(2)                                                                                                                                                                                                                                                                        | 23.5800(2)                                                                                                                                                                                                                                                                         |                                |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90                                                                                                                                                                                                                                                                   | 92.493(9)                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                 |                                |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      | · /                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.784(2)                                                                                                                                                                                                                                                           | 103.398(9)                                                                                                                                                                                                                                                                       | 102.6260(10)                                                                                                                                                                                                                                                                       |                                |
| [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.784(2)<br>90                                                                                                                                                                                                                                                     | 103.398(9)<br>100.087(9)                                                                                                                                                                                                                                                         | 102.6260(10)<br>90                                                                                                                                                                                                                                                                 |                                |
| [°]<br>olume [ų]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.784(2)<br>90<br>2819.86(10)                                                                                                                                                                                                                                      | 103.398(9)<br>100.087(9)<br>2475.8(5)                                                                                                                                                                                                                                            | 102.6260(10)<br>90<br>10168.01(16)                                                                                                                                                                                                                                                 |                                |
| [°]<br>olume [ų]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.784(2)<br>90<br>2819.86(10)<br>2                                                                                                                                                                                                                                 | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2                                                                                                                                                                                                                                       | 102.6260(10)<br>90<br>10168.01(16)<br>8                                                                                                                                                                                                                                            |                                |
| [°]<br>folume [ų]<br>fo <sub>cald.</sub> [g/cm³]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417                                                                                                                                                                                                                        | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577                                                                                                                                                                                                                              | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423                                                                                                                                                                                                                                   |                                |
| [°] colume [ų] cold. [g/cm³] (000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236                                                                                                                                                                                                                | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184                                                                                                                                                                                                                      | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464                                                                                                                                                                                                                           |                                |
| [°] colume [ų] cold. [g/cm³] (000) rystal size [mm³]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 110.784(2) \\ 90 \\ 2819.86(10) \\ 2 \\ 1.417 \\ 1236 \\ 0.23 \times 0.20 \times 0.12 \end{array} $                                                                                                                                               | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>$0.26 \times 0.17 \times 0.07$                                                                                                                                                                                    | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16                                                                                                                                                                                                     |                                |
| [°] folume [ų] folume [Ås] folume [g/cm³] folume [g/cm³] folume [g/cm³] folume [mm³] folume [range [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>0.23 × 0.20 × 0.12<br>3.35 to 25.00                                                                                                                                                                         | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00                                                                                                                                                                               | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00                                                                                                                                                                                    |                                |
| [°] colume [ų] cold. [g/cm³] (000) crystal size [mm³] range [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $110.784(2)$ 90 $2819.86(10)$ 2 $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$                                                                                                                                            | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$                                                                                                                                                         | $102.6260(10)$ 90 $10168.01(16)$ 8 $1.423$ $4464$ $0.18 \times 0.16 \times 0.16$ 3.28 to 25.00 $-12 \le h \le 12$                                                                                                                                                                  |                                |
| [°] colume [ų]  cold. [g/cm³] (000)  rystal size [mm³]  range [°]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $110.784(2)$ $90$ $2819.86(10)$ $2$ $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$ $17 \le k \le 24$                                                                                                                      | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$                                                                                                                                    | $102.6260(10)$ 90 $10168.01(16)$ 8 $1.423$ $4464$ $0.18 \times 0.16 \times 0.16$ 3.28 to 25.00 $-12 \le h \le 12$ $-50 \le k \le 49$                                                                                                                                               |                                |
| [°] colume [ų] cold. [g/cm³] (000) rystal size [mm³] range [°] ndex ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $110.784(2)$ $90$ $2819.86(10)$ $2$ $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$ $17 \le k \le 24$ $-15 \le l \le 15$                                                                                                   | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$                                                                                                              | $102.6260(10)$ 90 $10168.01(16)$ 8 $1.423$ $4464$ $0.18 \times 0.16 \times 0.16$ 3.28 to 25.00 $-12 \le h \le 12$ $-50 \le k \le 49$ $-28 \le l \le 23$                                                                                                                            |                                |
| [°] colume [ų]  cold. [g/cm³] (000)  rystal size [mm³]  range [°] ndex ranges  eflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $110.784(2)$ $90$ $2819.86(10)$ $2$ $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$ $17 \le k \le 24$ $-15 \le l \le 15$ $21034$                                                                                           | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573                                                                                                     | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855                                                                                                         |                                |
| [°] colume [ų] colume [Å] (000) crystal size [mm³] range [°] ndex ranges  eflections collected ndependent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $110.784(2)$ $90$ $2819.86(10)$ $2$ $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$ $17 \le k \le 24$ $-15 \le l \le 15$ $21034$ $4960$                                                                                    | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705                                                                                             | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796                                                                                                |                                |
| [°] colume [ų] colume [Ås] (000) crystal size [mm³] range [°] ndex ranges deflections collected dependent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $110.784(2)$ $90$ $2819.86(10)$ $2$ $1.417$ $1236$ $0.23 \times 0.20 \times 0.12$ $3.35 \text{ to } 25.00$ $-13 \le h \le 13$ $17 \le k \le 24$ $-15 \le l \le 15$ $21034$ $4960$ $0.0185$                                                                           | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829                                                                                   | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205                                                                                      |                                |
| [°] colume [ų] $\frac{1}{2}$ colume [ų] $\frac{1}{2}$ colume [ $\frac{1}{2}$ ] $\frac{1}{2}$ colume [ $\frac{1}{2}$ ] $\frac{1}{2}$ column                                                                                                                                                                                                                                                                                                                                                                                            | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to $25.00-13 \le h \le 1317 \le k \le 24-15 \le l \le 152103449600.018599.8$                                                                                         | 103.39 $\hat{8}(9)$<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>-12 ≤ $h$ ≤ 11<br>12 ≤ $k$ ≤ 13<br>-25 ≤ $l$ ≤ 25<br>18573<br>8705<br>0.0829<br>99.7                                                                              | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7                                                                              |                                |
| [°] folume [ų] $\theta_{cald.}$ [g/cm³] $\theta_{cald.}$ [g/cm³] $\theta_{cald.}$ [g/cm³] for ange [°] for ange $\theta_{cald.}$ [°] for an | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to $25.00-13 \le h \le 1317 \le k \le 24-15 \le l \le 152103449600.018599.80.9404$ and $0.8901$                                                                      | 103.39 $\hat{8}(9)$<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>-12 ≤ $h$ ≤ 11<br>12 ≤ $k$ ≤ 13<br>-25 ≤ $l$ ≤ 25<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383                                                         | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080                                                       |                                |
| [°] folume [ų] $\frac{1}{2}$ folume [ų] $\frac{1}{2}$ folume [ų] $\frac{1}{2}$ folial size [mm³] $\frac{1}{2}$ folial size [mm³] fol                                                                                                                                                                                                                                                                                                                                                                                                        | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to $25.00-13 \le h \le 1317 \le k \le 24-15 \le l \le 152103449600.018599.80.9404$ and $0.8901340$                                                                   | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383<br>616                                               | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080<br>1197                                               |                                |
| [°] colume [ų] (** **Color of the proof of                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to $25.00-13 \le h \le 1317 \le k \le 24-15 \le l \le 152103449600.018599.80.9404$ and $0.89013401.063$                                                              | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383<br>616<br>0.946                                      | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080<br>1197<br>1.025                                      |                                |
| [o] [olume [ų] [olume [ų] [olume [ų] [olume [ų] [olume [ab]] [olu                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to $25.00-13 \le h \le 1317 \le k \le 24-15 \le l \le 152103449600.018599.80.9404$ and $0.8901340$                                                                   | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383<br>616<br>0.946<br>$R_1 = 0.0692$                    | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080<br>1197<br>1.025<br>$R_1 = 0.0307$                    |                                |
| [°] folume [ų] $R$ foliate $R$ foliate $R$ indices $R$ foliate $R$ indices $R$ foliate                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to 25.00<br>$-13 \le h \le 13$<br>$17 \le k \le 24$<br>$-15 \le l \le 15$<br>21034<br>4960<br>0.0185<br>99.8<br>0.9404 and $0.89013401.063R_1 = 0.0357wR_2 = 0.0921$ | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383<br>616<br>0.946<br>$R_1 = 0.0692$<br>$wR_2 = 0.1268$ | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080<br>1197<br>1.025<br>$R_1 = 0.0307$<br>$wR_2 = 0.0817$ |                                |
| [°] olume [ų]   cald. [g/cm³] (000)  rystal size [mm³]  range [°]  index ranges  effections collected  adependent reflections  int  ompleteness to θ = 25.00° [%]  el. transmission factors  arameters  eOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.784(2)<br>90<br>2819.86(10)<br>2<br>1.417<br>1236<br>$0.23 \times 0.20 \times 0.12$<br>3.35 to 25.00<br>$-13 \le h \le 13$<br>$17 \le k \le 24$<br>$-15 \le l \le 15$<br>21034<br>4960<br>0.0185<br>99.8<br>0.9404 and $0.89013401.063R_1 = 0.0357$              | 103.398(9)<br>100.087(9)<br>2475.8(5)<br>2<br>1.577<br>1184<br>0.26 × 0.17 × 0.07<br>3.31 to 25.00<br>$-12 \le h \le 11$<br>$12 \le k \le 13$<br>$-25 \le l \le 25$<br>18573<br>8705<br>0.0829<br>99.7<br>0.9524 and 0.8383<br>616<br>0.946<br>$R_1 = 0.0692$                    | 102.6260(10)<br>90<br>10168.01(16)<br>8<br>1.423<br>4464<br>0.18 × 0.16 × 0.16<br>3.28 to 25.00<br>$-12 \le h \le 12$<br>$-50 \le k \le 49$<br>$-28 \le l \le 23$<br>37855<br>14796<br>0.0205<br>99.7<br>1.00000 and 0.95080<br>1197<br>1.025<br>$R_1 = 0.0307$                    |                                |

 $\overline{[\mathbf{a}] \ R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|}. \ [\mathbf{b}] \ \omega R_2 = \{ \sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}.$ 

1233 (s), 1044 (s), 983 (m), 874 (m), 853 (m), 841 (m), 824 (w), 785 (m), 712 (w), 689 (w), 642 (w), 585 (w) cm $^{-1}$ . ESI-MS: m/z (%) = (21), 149 (30), 117 (35). HRMS: calcd. for  $C_{13}H_6F_6N_2+H$ :

## **FULL PAPER**

305.05079; found 305.05016. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 271.0 nm.

*N,N-Bis*(2,3,4,5,6-pentafluorophenyl)formamidine (2g): Yield 74% (5.6 g); m.p. 162 °C (crystallized from *n*-hexane). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.28 (s, 1 H, N=C*H*N) ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -152.1 (br), -160.8 (br), -162.6 (br) ppm. IR (KBr):  $\tilde{v}$  = 2861 (w), 1678 (s), 1640 (m), 1514 (s), 1462 (m), 1380 (w), 1322 (m), 1288 (m), 1170 (w), 1035 (m), 978 (s), 783 (w), 607 (w), 564 (w), 493 (w) cm<sup>-1</sup>. ESI-MS: m/z (%) = 377 (100) [M<sup>+</sup>], 236 (21), 219 (27). HRMS: calcd. for C<sub>13</sub>H<sub>2</sub>F<sub>10</sub>N<sub>2</sub>+H: 377.01311; found 305.01062. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 264.5 nm.

*N,N-Bis*(p-trifluoromethylphenyl)formamidine (2h): $^{[26-31]}$  Yield 59% (4.9 g), m.p. 166 °C.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.42 (br. s, 1 H, NH), 8.21 (s, 1 H, N=C*H*N), 7.60 (d, *J* = 17.8 Hz, 4 H, C<sub>6</sub>H<sub>2</sub>), 7.16 (d, *J* = 16.3 Hz, 4 H, C<sub>6</sub>H<sub>2</sub>) ppm.  $^{13}$ C NMR (CDCl<sub>3</sub>):  $\delta$  = 162.9, 159.0, 126.8, 126.8, 126.7, 126.6, 119.5, 118.9, 118.1, 114.1 ppm.  $^{19}$ F NMR (CDCl<sub>3</sub>):  $\delta$  = -61.8 ppm. IR (KBr):  $\tilde{v}$  = 2975 (m), 1672 (s), 1609 (s), 1514 (m), 1492 (m), 1418 (m), 1315 (s), 1236 (m), 1214 (m), 1180 (m), 1157 (m), 1107 (s), 1069 (s), 1011 (m), 988 (m), 946 (w), 849 (m), 833 (m), 778 (w), 731 (w), 674 (w), 643 (w), 620 (w), 591 (w), 553 (w), 511 (w) cm<sup>-1</sup>. ESI-MS: mlz (%) = 333 (100) [M<sup>+</sup>], 236 (23), 146 (20). HRMS: calcd. for C<sub>15</sub>H<sub>10</sub>F<sub>6</sub>N<sub>2</sub>+H: 333.08209; found 333.08174. UV/Vis (CH<sub>3</sub>CN, 25 °C)  $\lambda$  = 300.75 nm.

Synthesis of  $Mo_2(L-H)_2(OtBu)_4$  (3a–3c and 3e–3f) with L=2a-2c and 2e–2f, respectively:  $Mo_2(OtBu)_6$  (200 mg, 0.32 mmol) was dissolved in pentane (10 mL) and cooled to -20 °C. The corresponding formamidine, 2a-2f, (2:1 molar ratio) was dissolved in DCM and added dropwise to the solution whereupon the colour of the solution slowly turned from bright orange to dark redbrown. After the solution was stirred for three hours, the solution was filtered and all of the volatiles where removed in vacuo. The obtained green-brown solid was dissolved in a mixture of toluene/ DCM (1:1) and recrystallized at -20 °C. The obtained crystals were thoroughly crushed and dried in vacuo at elevated temperatures in order to completely remove the cocrystallized solvent for the elemental analysis and the NMR spectroscopic measurements.

**Mo<sub>2</sub>**[2a–H]<sub>2</sub>(**O***t***Bu**)<sub>4</sub> (3a): Compound 2a (124 mg, 0.64 mmol) afforded 3a (230 mg, 0.26 mmol) in 82% yield. C<sub>42</sub>H<sub>58</sub>Mo<sub>2</sub>N<sub>4</sub>O<sub>4</sub> (874.8): calcd. C 57.66, H 6.68, N 6.40; found C 57.54, H 6.75, N 6.44. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.83 (s, 2 H, N =C*H*N), 6.13–6.32 (m, 20 H, Ar), 1.32 (s, 36 H, *t*Bu) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 169.6, 145.1, 129.4, 124.4, 123.0, 83.0, 33.0 ppm.

**Mo<sub>2</sub>**[2**b**-**H**]<sub>2</sub>(**O***t***Bu**)<sub>4</sub> (3**b**): Compound 2**b** (179 mg, 0.64 mmol) afforded 3**b** (176 mg, 0.19 mmol) in 59% yield. C<sub>42</sub>H<sub>54</sub>F<sub>4</sub>Mo<sub>2</sub>N<sub>4</sub>O<sub>4</sub> (946.8): calcd. C 53.28, H 5.75, N 5.92; found C 52.97, H 5.74, N 6.01. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.88 (s, 2 H, N=C*H*N), 6.11–6.32 (m, 16 H, Ar), 1.40 (s, 36 H, *t*Bu) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 176.3, 162.3, 146.0, 124.2, 116.0, 81.06, 32.2 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -118.8 (m) ppm.

Mo<sub>2</sub>[2c-H]<sub>2</sub>(O*t*Bu)<sub>4</sub> (3c): Compound 2c (172 mg, 0.64 mmol) afforded 3c (176 mg, 0.17 mmol) in 53% yield. The obtained single crystals were suitable for single-crystal X-ray diffraction measurements.  $C_{42}H_{50}F_8Mo_2N_4O_4$  (1018.7): calcd. C 49.52, H 4.95, N 5.50; found C 49.93, H 5.01, N 5.71. <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ = 8.97 (s, 2 H, N=C*H*N), 6.00–6.28 (m, 12 H, Ar), 1.43 (s, 36 H, *t*Bu) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 176.0, 164.2, 150.2, 107.2, 100.1, 82.4, 32.1 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>): δ = -108.3 (m) ppm.

**Mo<sub>2</sub>**[2e–H]<sub>2</sub>(O*t*Bu)<sub>4</sub> (3e): Compound 2e (195 mg, 0.64 mmol) afforded 3e (237 mg, 0.22 mmol) in 69% yield.  $C_{42}H_{46}F_{12}Mo_2N_4O_4$  (1090.7): calcd. C 46.25, H 4.25, N 5.14; found C 46.86, H 4.33, N 5.22. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 9.12 (s, 2 H, N=C*H*N), 6.27–6.36 (m,

4 H, Ar), 6.07–6.21 (m, 4 H, Ar), 1.44 (s, 36 H, tBu) ppm.  $^{13}$ C NMR (CDCl<sub>3</sub>):  $\delta$  = 179.1, 158.4, 155.9, 152.1, 149.1, 106.0, 99.5, 80.9, 32.8 ppm.  $^{19}$ F NMR (CDCl<sub>3</sub>):  $\delta$  = –114.5 (m), –132.0 (m), –156.2 (m) ppm.

**Mo<sub>2</sub>**[2f–H]<sub>2</sub>(*OtB*u)<sub>4</sub> (*3f*): Compound 2f (193 mg, 0.64 mmol) afforded 3f (248 mg, 0.23 mmol) in 72% yield. The obtained single crystals were suitable for single-crystal X-ray diffraction measurements. C<sub>42</sub>H<sub>46</sub>F<sub>12</sub>Mo<sub>2</sub>N<sub>4</sub>O<sub>4</sub> (1090.7): calcd. C 46.25, H 4.25, N 5.14; found C 46.11, H 4.20, N 5.32. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  = 8.87 (s, 2 H, N=C*H*N), 6.13–6.29 (m, 8 H, Ar), 1.46 (s, 36 H, *t*Bu) ppm. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$  = 175.9, 169.9, 152.6, 144.7, 107.5, 82.4, 32.3 ppm. <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  = -132.0 (m), -163.9 (m) ppm.

Supporting Information (see footnote on the first page of this article): The information on the  $H \cdots F$  interactions for compounds 2 and the details of the DFT calculations.

### Acknowledgments

Financial support by the Technical University of Berlin (Cluster of Excellence, *Unifying Concepts in Catalysis*, EXC 314/1; www.unicat. tu-berlin.de), funded by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. S. K. thanks the Fonds der Chemischen Industrie for a Kekulé scholarship and the Berlin International Graduate School of Natural Sciences and Engineering (BIG-NSE) for ideational support. S. I. thanks the Japan Society for the Promotion of Science (JSPS) for financial support of his work.

- [1] K. Reichenbächer, H. I. Süss, J. Hulliger, *Chem. Soc. Rev.* **2005**, *34*, 22–30.
- [2] "Fluorine in the Life Science Industry", P. Maienfisch (Ed.), Chimia 2004, 58, 92–162.
- [3] G. W. Coates, A. R. Dunn, L. M. Hennling, J. W. Ziller, E. B. Lobkosky, R. H. Grubbs, J. Am. Chem. Soc. 1998, 120, 3641– 3649
- [4] H. Takemura, N. Kon, M. Kotoku, S. Nakashima, K. Otsuka, M. Yasutake, T. Shinmyozu, T. Inazu, J. Org. Chem. 2001, 66, 2778–2783.
- [5] H. Plenio, R. Diodone, Chem. Ber. 1996, 129, 1211–1217.
- [6] R. Uson, J. Fornies, M. Tomas, J. M. Casas, F. A. Cotton, L. R. Falvello, R. Llusar, Organometallics 1988, 7, 2279–2285.
- [7] H. W. Roesky, I. Haiduc, J. Chem. Soc., Dalton Trans. 1999, 2249–2264.
- [8] F. A. Cotton, C. A. Murillo, I. Pascual, *Inorg. Chem.* 1999, 38, 2182–2187.
- [9] F. A. Cotton, T. Ren, J. Am. Chem. Soc. 1992, 114, 2237–2242.
- [10] K. L. Fujdala, T. D. Tilley, Chem. Mater. 2004, 16, 1035–1047.
- [11] J.-G. Ma, Y. Aksu, L. J. Gregoriades, J. Sauer, M. Driess, *Dalton Trans.* 2010, 39, 103–106.
- [12] S. Krackl, J.-G. Ma, Y. Aksu, M. Driess, Eur. J. Inorg. Chem. 2011, DOI: 10.1002/ejic.201001236.
- [13] F. A. Cotton, C. A. Murillo, R. A. Walton, *Multiple Bonds between Metal Atoms*, 3rd ed., Springer Science and Business Media, Inc., New York City, 2005.
- [14] H. Komber, H.-H. Limbach, F. Böhme, C. Kunert, J. Am. Chem. Soc. 2002, 124, 11955–11963.
- [15] T. M. Gilbert, C. B. Bauer, A. H. Bond, R. D. Rogers, *Polyhedron* 1999, 18, 1293–1301.
- [16] T. M. Gilbert, A. M. Landes, R. D. Rogers, *Inorg. Chem.* 1992, 31, 3438–3444.
- [17] S. Krackl, A. Company, S. Enthaler, M. Driess, *ChemCatChem* 2011, DOI: 10.1002/cctc.201100007.
- [18] T. A. Budzichowski, M. H. Chisholm, *Polyhedron* 1994, 13, 2035–2042.
- [19] G. M. Sheldrick, SHELXL-97, University of Göttingen, Germany, 1997.



- [20] K. Hirano, S. Urban, C. Wang, F. Glorius, Org. Lett. 2009, 11, 1019–1022.
- [21] W. Eul, G. Gattow, Z. Anorg. Allg. Chem. 1986, 535, 148–158.
- [22] R. Anulewicz, I. Wawer, T. M. Krygowski, F. Männle, H.-H. Limbach, J. Am. Chem. Soc. 1997, 119, 12223–12230.
- [23] L. Meschede, H. H. Limbach, J. Phys. Chem. 1991, 95, 10267– 10280.
- [24] H. H. Limbach, L. Meschede, G. Scherer, Z. Naturforschung, Teil A 1989, 44, 459–472.
- [25] R. Rossi, A. Duatti, L. Magon, L. Toniolo, *Inorg. Chim. Acta* 1981, 48, 243–246.
- [26] T. Ren, C. Lin, E. J. Valente, J. D. Zubkowski, *Inorg. Chim. Acta* 2000, 297, 283–290.

- [27] S. J. Archibald, N. W. Alcock, D. H. Busch, D. R. Whitcomb, *Inorg. Chem.* 1999, 38, 5571–5578.
- [28] K. M. Carlson-Day, J. L. Eglin, L. T. Smith, C. Lin, R. J. Staples, D. O. Wipf, *Polyhedron* 1999, 18, 817–824.
- [29] J. L. Eglin, C. Lin, T. Ren, L. Smith, R. J. Staples, D. O. Wipf, Eur. J. Inorg. Chem. 1999, 2095–2103.
- [30] C. Lin, J. D. Protasiewicz, T. Ren, *Inorg. Chem.* 1996, 35, 7455–7458.
- [31] C. Lin, J. D. Protasiewicz, E. T. Smith, T. Ren, *Inorg. Chem.* 1996, 35, 6422–6428.

Received: December 27, 2010 Published Online: March 16, 2011

www.eurjic.org